

Scene Graph Expansion for Semantics-Guided Image Outpainting

Chiao-An Yang, Cheng-Yo Tan, Wan-Cyuan Fan Cheng-Fu Yang, Meng-Lin Wu, Yu-Chiang Frank Wang

Introduction

Image Outpainting

Input

Scene Graph Expansion for Semantics-Guided Image Completion

Generate the visual context of an image beyond its given boundary.

Output

Observation

- Most previous approaches focus on...
 - 1. extending the surrounding texture eg. sceneries

1

[1] Zongxin Yang, Jian Dong, Ping Liu, Yi Yang, and Shuicheng Yan. Very long natural scenery image prediction by outpainting. ICCV, 2019. [2] Yi Wang, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Wide-context semantic image extrapolation. CVPR, 2019

Scene Graph Expansion for Semantics-Guided Image Completion

2. completing the fractional objects eg. faces, birds, clothes

Introduction

Scene Graph Expansion for Semantics-Guided Image Completion

A Toy Example

Introduction

Motivation

• To generate novel **object**(s) with reasonable **relationships**

Scene Graph Expansion for Semantics-Guided Image Completion

girl throw frisbee girl on grass

Scene Graphs

 To analyze both objects and relationships, scene graph is a desirable data representation.

Three-level Representation

• A given image can be decomposed into three levels of information.

Visual (RGB image)

Introduction

Three-stage Outpainting

Input

SGE + G2L + L2I

Input SG

Scene Graph Expansion $\mathcal{S}^{op} = (\mathbf{O}^{op}, \mathbf{R}^{op})$ tree

Output SG

Introduction

Three-stage Outpainting

Input

$(\mathbf{L}^{in}, \mathbf{I}^{in}) = (\mathbf{B}^{in}, \mathbf{D}^{in}, \mathbf{I}^{in})$

Input layout, image

$$\begin{cases} B_i = \text{boundir} \\ D_{ij} = \text{boundir} \end{cases}$$

Output layout

ng box of object_i

ng box displacement between object_i and object_j

Introduction

Three-stage Outpainting

Input

Approach

Approach Transformer-based architecture

- **SGT:** Scene Graph Transformer
- Semantic-guided Image Outpainting
 - **SGE**: Scene Graph Expansion
 - **G2L**: Graph to Layout
 - L2I: Layout to Image

Approach

Approach (1) Transformer-based architecture

- **SGT:** Scene Graph Transformer
- Semantic-guided Image Outpainting
 - SGE: Scene Graph Expansion
 - G2L: Graph to Layout
 - L2I: Layout to Image

The Problems of Standard Transformers

 Previous approaches "flatten" the scene graph as triplets sequence which result in long sequence length for a large scene graph $L = 3E = 3N^2$.

LTNet (Yang et al. CVPR 2021.)

The Problems of Standard Transformers

• It also cause redundant computation since a single object with multiple relationships will occur in multiple triplets.

Scene Graph

Scene Graph Expansion for Semantics-Guided Image Completion

Redundant Computation of Self-attention

Scene Graph Transformer

- No long input sequence
- No redundant computation

Scene Graph Expansion for Semantics-Guided Image Completion

Node-level attention

The attention between (node_i, node_j) is dependent on edge_ij.

	girl	frisbee	grass
girl	<self></self>	throw	on
frisbee	<no></no>	<self></self>	<no></no>
grass	<no></no>	<no></no>	<self></self>

attention $(h_2^n, h_1^n) \leftarrow h_{21}^e$ **attention** $(h_2^n, h_2^n) \leftarrow h_{22}^e$ **attention** $(h_2^n, h_3^n) \leftarrow h_{23}^e$

Edge-level attention The attention (edge_ij, edge_ik) is dependent on object node_i. The attention (edge_ij, edge_kj) is dependent on subject node_j.

Scene Graph Expansion for Semantics-Guided Image Completion

attention $(h_{21}^e, h_{21}^e) \leftarrow h_2^n, h_1^n$ attention $(h_{21}^e, h_{22}^e) \leftarrow h_2^n$ attention $(h_{21}^e, h_{23}^e) \leftarrow h_2^n$ attention $(h_{21}^e, h_{11}^e) \leftarrow h_1^n$ attention $(h_{21}^e, h_{31}^e) \leftarrow h_1^n$

Scene Graph Transformer • No long input sequence $L = 3E = 3N^2 \Rightarrow L' = N + N^2$

• No redundant computation \Rightarrow Each node and edge appears once.

Transformer-based architecture

- SGT: Scene Graph Transformer
- Semantic-guided Image Outpainting
 - **SGE**: Scene Graph Expansion
 - **G2L**: Graph to Layout
 - L2I: Layout to Image

SGE + G2L + L2I

Approach

Scene Graph Expansion for Semantics-Guided Image Completion

- node: objects, bboxes...
- edge: relationships, bbox disparities...

Approach

Scene Graph Expansion for Semantics-Guided Image Completion

- node: objects, bboxes...
- edge: relationships, bbox disparities...

Approach

SGE & G2L

masked

- Both T_{SGE} and T_{G2L} are SG Transformers.
 - node: objects, bboxes...
 - edge: relationships, bbox disparities...

SGE + G2L + L2I

Approach

Scene Graph Expansion for Semantics-Guided Image Completion

- node: objects, bboxes...
- edge: relationships, bbox disparities...

• SPADE-based Generative model [1, 2]

• semantic map guidance: image f^{I} + layout f^{L}

[1] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-adaptive normalization. CVPR, 2019. [2] Roei Herzig, Amir Bar, Huijuan Xu, Gal Chechik, Trevor Darrell, and Amir Globerson. Learning canonical representations for scene graph to image generation. ECCV 2020.

Experiments

Datasets

VG-MSDN

Scene Graph Expansion for Semantics-Guided Image Completion

COCO-stuff

• The accuracy of our semantics extrapolation

• The quality of our outpainted images

Experiments: SGE

	VG-MSDN				
	Object		Relation		
	$rAVG\downarrow$	Hit@ 1/5 ↑	$rAVG\downarrow$	Hit@ 1/5 ↑	
Transformer	33.77	10.6 / 28.9	5.30	35.3 / 65.8	
2 LTNet	24.45	13.9 / 34.8	4.70	34.8 / 74.6	
3 GTwE	11.91	27.0 / 57.2	5.36	35.8 / 72.5	
SGT	8.38	39.7 / 68.9	3.43	55.3 / 84.3	
	COCO-stuff				
	(Object		Relation	
	rAVG↓	Hit@ 1 / 5 ↑	rAVG↓	Hit@ 1/3 ↑	
Transformer	22.35	14.7 / 37.8	2.37	29.4 / 78.5	
LTNet	17.22	20.1 / 45.8	2.36	29.1 / 78.4	
GTwE	11.81	28.4 / 57.2	2.89	20.4 / 63.3	
SGT	11.03	29.6 / 59.0	2.19	45.5 / 82.2	

[1] Vaswani et al. Attention is All you Need. NIPS, 2017.

[2] Yang et al. LayoutTransformer: Scene Layout Generation With Conceptual and Spatial Diversity. CVPR, 2021. [3] Dwivedi et al. A Generalization of Transformer Networks to Graphs. AAAIW, 2021.

Experiments: G2L

	VG-MSDN	COCO-stuff		
	mIoU	mIoU		
1 Transformer	5.1 / 71.2 / 51.9	10.4 / 75.7 / 61.2		
2 GCN	11.4 / 70.6 / 50.0	21.1 / 72.3 / 60.8		
3 GTwE	12.3 / 79.9 / 62.1	21.3 / 73.2 / 64.8		
SGT	14.5 / 81.1 / 62.4	28.2 / 85.1 / 74.9		

[1] Vaswani et al. Attention is All you Need. NIPS, 2017.

[2] Kipf et al. Semi-Supervised Classification with Graph Convolutional Networks. ICLR, 2016.[3] Dwivedi et al. A Generalization of Transformer Networks to Graphs. AAAIW, 2021.

Experiments The accuracy of our semantic guidance extrapolation

The quality of our outpainted images

Image Outpainting

[1] Teterwak et al. Boundless: Generative Adversarial Networks for Image Extension. ICCV, 2019. [2] Herzig et al. Learning Canonical Representations for Scene Graph to Image Generation. ECCV, 2020

Image Outpainting

[1] Teterwak et al. Boundless: Generative Adversarial Networks for Image Extension. ICCV, 2019. [2] Herzig et al. Learning Canonical Representations for Scene Graph to Image Generation. ECCV, 2020

Semantic-guided Image Outpainting

Semantic-guided Image Outpainting

Conclusion • Graph Transformer (SGT) ntion at both

- propose a novel Scene Graph Transformer (SGT) uniquely performs attention at both node and edge levels for modeling input structural information
- decompose the task into the stages SGE, G2L, and L2I leverage the information observed from the nodes and edges in the partial input scene graph, inferring plausible object co-occurrences, and thus producing the final image output

 $\mathbf{h}_1^n \mathbf{h}_2^n \mathbf{h}_2$

